Prior k-anonymity via insensitive microaggregation to reduce data utility loss when achieving \(\varepsilon \)-differential privacy in data releases

In insensitive microaggregation

Information loss (k=1 is standard diff. privacy, \(\varepsilon \) from 0.01 to 10)

Construction to achieve \(t \)-closeness and \(\varepsilon \)-differential privacy

Partition of the data set into groups P1, P2, P3... by the quasi-identifiers and bucketization of the confidential attribute to achieve \(t \)-closeness

\[d(D_1, D_2) = \max_S \left\{ \frac{Pr_{D_1}(S)}{Pr_{D_2}(S)} \times \frac{Pr_{D_2}(S)}{Pr_{D_1}(S)} \right\} \]

where \(D_1 \) and \(D_2 \) are two random distributions differing in one record and \(S \) is an arbitrary set.

◆ The granularity of confidential attribute is reduced, so \(t \)-closeness is achieved with distance

\[Pr_{D_1}(S) \leq \exp(\varepsilon) \times Pr_{D_2}(S) \]

where \(D_1 \) is the distribution of the confidential attribute in the whole protected data set and \(D_2 \) is the distribution of the confidential attribute in the group \(Pi \) containing a specific individual.

From \(\varepsilon \)-differential privacy to expected \(t \)-closeness

Let \(X \) be an original data set and \(X' \) be a corresponding anonymized data set such that its quasi-identifiers are \(k \)-anonymous and the projection of \(X' \) on the confidential attributes is \(\varepsilon \)-differentially private. Then \(X' \) satisfies expected \(t \)-closeness with

\[t = g^{-1}(\exp((N - k) \times \varepsilon)) \]

Hence, a greedy way to achieve actual \(t \)-closeness is to keep generating \(\varepsilon \)-differentially private versions of the confidential attribute until a \(t \)-close version is found.

Conclusions

The \(k \)-anonymity, \(t \)-closeness and differential privacy models are connected. Using a prior \(k \)-anonymization step based on insensitive microaggregation allows achieving differential privacy in data set releases with less utility loss. Also, \(\exp(\varepsilon) \)-closeness implies \(\varepsilon \)-differential privacy for uninformed intruders in data releases. Finally, \(k \)-Anonymity for quasi-identifiers combined with \(\varepsilon \)-differential privacy for confidential attributes yields \(t \)-closeness in expectation, with \(t = f(k, \varepsilon) \).

References

